
Building C and C++ Libraries with Perl

Page 1

Building C/C++ libraries with Perl
Author

Alberto Simões <ambs@cpan.org>.

Biography: Alberto Simões
I am just another Perl hacker. Programming Perl for more than a dozen
 years, I use it mainly for web
development and natural language
 processing.

My academic formation is in computer science, with a MSc and a PhD in
 natural language processing
using Perl, of course.

My main activity is teaching at university level. Unfortunately I am
 not lucky to teach Perl. This last
year I have taught Bison and Flex
 in a Languages Processing course, and used a pseudo-language
for a
 course in Artificial Intelligence for Games.

I do research in natural language processing, with emphasis in the
 Portuguese language. This
explains the amount of modules in the Lingua:: and Lingua::PT:: name-spaces. The need for
speed makes
 me rely on C libraries which in turn causes my need for building C and
 C++ libraries
using Perl.

Finally, in the Perl Community, I am member of the YAPC Europe
 Foundation board, the chair of The
Perl Foundation Grants Committee,
 treasurer of the Portuguese Perl Programmers Association and a

sporadic Dancer hacker.

Abstract
We all know that the popular AutoTools is evil. AutoConf is
 messy, AutoMake a confusion, and the
lack of an automated way to
 build this kind of projects on most Linux distributions, Mac OS X and

Windows makes these applications portability poor.

If together with all this, your non-Perl code (let's talk mostly of C
 and C++) will be only used from
within your own Perl module, it is a
 headache and a shame to make available these libraries in
tarballs
 that somehow are not easy to install.

After years of user complains, I decided to bundle some libraries
 inside my Perl modules. I am sorry
for anyone who wants to use the
 library from another language (I do not think there is such an user

yet), but bundling the code in a Perl module that can be automatically
 installed by any CPAN tool is
just great. And it is even greater if
 they work mostly out of the box on the three major operating
systems
 (for Windows I need Strawberry Perl).

In this article I explain how I bundle some modules that include
 C or C++ libraries, like
Lingua::Identify::CLD, Lingua::NATools, Lingua::Jspell or Text::BibTeX.

Introduction and Motivation
Before starting, I would like to make a statement: this article is
 my point of view on how things are in
the open source world, and how I
 choose to solve some of those issues. My solution is not unique,
and
 not the best, surely.

Most C and C++ libraries that are available in open source projects
 are shipped in tarballs with a
configure script and a makefile. That is an acceptable approach, but it is not the
 best. Other
approaches are available, like cmake, but it didn't
 have much impact (at least, yet).

Most developers keep using the well known AutoTools, not because of
 their quality or even flexibility,
but because everybody uses them,
 and the alternatives are not widespread. Also, there are lots of

macros already available, and most autoconf scripts are just a
 bunch of copy and paste blocks from
another projects, with minor
 changes, where maintainers just hope to work, and pray
 everyday.

What are these tools? They are mostly written in Perl (yes, that is
 true) and they use M4 macros, a
language nobody on earth
 understands and likes to use. These Perl scripts parse a definition of
 a
configuration file, and generate a shell script, that will try to
 detect how to build your application. It will
detect a C compiler, a
 bunch of libraries, the size of your integers, where the required
 libraries are,

Building C and C++ Libraries with Perl

Page 2

and a lot of more useful and not so useful
 variables.

So, for a user to build one of these libraries, he needs to have a
 Perl interpreter, autoconf, automake,
libtool, m4, make, and all the software needed to really build the library,
 typically a C compiler (gcc,
probably) and all the libraries the
 software depends on.

This tool chain is too big to be easy to maintain, and to have users
 to install on non-Linux systems.
Even Mac OS X that is supposed to be
 an Unix system has problems with these tools.

I have been bitten by AutoTools a lot of times, having to give
 support to users to install a library I
maintain, just because they
 want to use a Perl module that uses that library.

I got enough from it, and decided to go all Perl. If AutoTools are
 written in Perl, users need Perl. Then,
if I go for Perl as a
 requirement, I am not requesting that much. Then, I will probably need
 some
modules that are not in the core. But those should be easy to
 install using any CPAN tool. With this in
mind I decided to invest
 some time, and I got a tool chain of Perl modules to compile any C and
 C++
code that might be bundled with any of my Perl modules.

In the next section I will describe each of the modules I use in my
 tool chain for building my modules
that include C or C++ code: Lingua::Identify::CLD, Lingua::NATools, Lingua::Jspell, Text::BibTeX or
Lingua::FreeLing3. Then, I will describe briefly
 how some of these modules' build systems is working
(no, I will not
 detail the code, you can see it on CPAN). At the end I will draw
 some conclusions.

Do not expect a step by step tutorial of how to write your module
 build system. Each module is
different and has its own
 specifics. Also, some code blocks might have been simplified.

Modules Tool Chain
In this section I describe the modules used, and for what they are
 used. I will not enter in detail on
how to use them, or how to glue
 them with each other.

Module::Build

 Although the most used module in CPAN, unfortunately ExtUtils::MakeMaker has a big
limitation: the
 rules are expressed in a makefile, where actions are shell
 commands. This makes it
harder to detect what commands to run, and run
 them accordingly.

Regarding this, Module::Build has a big advantage. As the rules are
 expressed as Perl functions
there is a lot more versatility. It is easy
 to write a module to subclass Module::Build and rewrite
some of the
 methods according with our needs.

ExtUtils::CBuilder

 We are talking about building C software, which
 means we need a C compiler. For that, Perl bundles
in its core modules
 the ExtUtils::CBuilder module, that is able to detect, using the Config
module, which C compiler to use and with which
 flags. It also has information on how to link a library
and how to
 link an executable. It even guesses some C++ flags quite well.

Its main drawback is that it is prepared to build Perl libraries: what
 I mean with Perl libraries is, the
libraries that are built with XS
 code and are loaded with DynaLoader. These libraries
 have some
differences from the standard libraries, at least on some
 operating systems. For instance, in Mac OS
X, the Perl libraries are
 known as bundles and the standard C libraries are known as dyld
 libraries
(standard dynamic libraries). They have different
 functionality (not that I am aware of the real
differences, my
 knowledge in this aspect is just superficial).

ExtUtils::ParseXS

 Also in the Perl core modules is ExtUtils::ParseXS. It parses XS files and generates the

corresponding C (or C++) code. If you use ExtUtils::MakeMaker or Module::Build built-in
mechanism for building C extensions you are
 using this module by default. As I am building my
extensions manually
 I need to call it myself, to create the C/C++ glue file.

Building C and C++ Libraries with Perl

Page 3

ExtUtils::Mkbootstrap

 Just like the previous module, ExtUtils::Mkbooktrap is also a Perl core module, and used by
the
 usual build tools to compile XS code. It is used to create a file used
 by DynaLoader to load
dynamically your extension. Again, as I am
 building everything by hand, it is part of my tool chain.

ExtUtils::PkgConfig / PkgConfig

At the moment I am using ExtUtils::PkgConfig
 to detect some libraries that bundle a .pc file.
This mechanism was
 used originally with Gnome (if I recall correctly), and now is common
 on most
libraries. To include a pkg-config file is easy, and can make
 the life of other programmers easier. So,
why not.

The problem with ExtUtils::PkgConfig is that it uses the pkg-config binary file. This extra
dependency is a problem. Some
 time ago it was discussed that it should exist a pure Perl

implementation of this module. PkgConfig seems to be
 that module, but I am not using it yet. But I
will probably migrate my
 build scripts to use PkgConfig in the future.

Config::AutoConf

With Config::AutoConf I start presenting two
 modules written by me (and with a lot of patches and
contributions) to
 help me with the C and C++ libraries build process.

Config::AutoConf is a module to mimic some of the behavior you can
 get with autoconf. It has
some methods to help detect if a library
 is available, if it can be linked with, if some header files are

available, if some binary is available, etc.

To complete some of these tasks Config::AutoConf uses ExtUtils::CBuilder to build some
simple C programs and detect if
 they build and run properly.

ExtUtils::LibBuilder

Finally, ExtUtils::LibBuilder is probably
 the most relevant module to build standalone system
libraries, but
 also, the module that needs more work. It is a hairy module that uses
 a set of heuristics
to, based on the information from Config and
 using ExtUtils::CBuilder, detect how to build a
standalone system
 library. For that, it uses some magic, looks to the system type, tries
 to build a
bunch of files, and if it succeeds, it returns the required
 flags for building the library.

This module is known to work in all Linux variants, Mac OS X and
 Windows with Strawberry Perl. I
also think it should work with Cygwin,
 but I didn't check it myself. I would love to have it work with
other
 compilers, like the Microsoft ones, but I do not have them for test,
 neither the time or interest to
do it myself.

My Build Modules
As I stated previously, I build my modules sub-classing Module::Build, and rewriting rules to
compile the C code, build
 libraries, etc. This section describes briefly the structure of these
 modules
implementation.

Lingua::Jspell

To start with, let us look into Lingua::Jspell. This module is a morphological
 analyzer, whose
code, written in C, is derived from the well known ispell (therefore the name: i++ = j). It is mainly
used for the
 Portuguese language, but it is language independent (well, at least
 for western European
languages) accordingly with the dictionary used.

Regarding the technical details, Lingua::Jspell is composed by C
 code that is linked into a
standard C library (libjspell), some C
 code that should be linked against libjspell, and a pure
Perl
 module (the interface at the moment is performed using a bidirectional
 pipe, but in the future I
plan to interface using XS).

With this description you can argue that the library should be shipped
 in an independent tarball. You
are correct. But we end up noticing
 that nobody was using the C library by itself, and the work
involved
 in maintaining AutoTools scripts was too much.

Building C and C++ Libraries with Perl

Page 4

From the build chain described above, this module uses Config::AutoConf,
ExtUtils::CBuilder, ExtUtils::LibBuilder
 and, of course, Module::Build.

The Build.PL script's algorithm is composed by:

1 The script starts by using Config::AutoConf to detect the ncurses library. In fact, I look
for the header file,

 Config::AutoConf->check_header("ncurses.h");

and then, for the tgoto function, for checking link capability:

 Config::AutoConf->check_lib("ncurses", "tgoto");

2 Follows a big hack to find out where to install the C standard
 library. I do not want to install it in
the usual place where Perl
 places the XS libraries, or the system will have trouble finding it,
 for
instance, for the standalone binaries. For Unix systems I get the
 path where Perl would install
binaries (usually /usr/bin/ or /usr/local/bin/) and I replace the bin portion with
lib64 or lib, and check if they exist. I use the first one available. If
 none is available, I
create the folder and cross my fingers.

For Windows I used to install in the C:\Windows path, but with
 Windows version 7 that folder
is write protected. The solution (not
 the best, I know) was to split the PATH environment
variable and
 try to write a dummy file in each folder. The first one that allows me
 that operation
is the place where I will place the dll file.

3 All this information is stored both as Module::Build configure data
 (that will create a
module named Lingua::Jspell::ConfigData) and in
 the builder notes. I also add build
elements, so the Module::Build
 knows where to place the built files.

Example of a builder note being stored:

 $builder->notes('libdir' => $libdir);

Saving in the configure data:

 $builder->config_data("libdir" => $libdir);

And defining build elements:

 $builder->add_build_element('usrlib');
 $builder->install_path('usrlib' => $libdir);

Truthfully, not just the library folder is computed here, but also (for
 Unix systems) the
pkg-config path (where the .pc file should be
 placed). But I will skip these details.

4 Finally, generate the build scripts, invoking the Module::Build method:

 $builder->create_build_script;

Regarding the Module::Build subclass, a lot of more work is
 needed. Module::Build
subclasses redefine build rules, where each
 rule is named ACTION_actioname. For instance,
ACTION_code is
 called when you run Build, after running Build.PL for
 configuring the module.

Usually I sucblass this action with a method that just calls my build
 methods. Also, I prepare a
ExtUtils::LibBuilder instance that will
 be used to build the library and compile the source code.
This could
 be done every time I need it, but this way the initial tests performed
 by
ExtUtils::LibBuilder to configure the build system are executed
 only once.

 sub ACTION_code {
 my $self = shift;

 # create some folders I need to use

Building C and C++ Libraries with Perl

Page 5

 for my $path (catdir("blib","pcfile"),
 catdir("blib","incdir"),
 catdir("blib","bindoc"),
 catdir("blib","script"),
 catdir("blib","bin")) {
 mkpath $path unless -d $path;
 }

 # create the LibBuilder object and save it
 my $libbuilder = ExtUtils::LibBuilder->new;
 $self->notes(libbuilder => $libbuilder);

 # dispatch every needed action
 $self->dispatch("create_manpages");
 $self->dispatch("create_yacc");
 $self->dispatch("create_objects");
 $self->dispatch("create_library");
 $self->dispatch("create_binaries");

 # and now, call superclass.
 $self->SUPER::ACTION_code;
}

These are the methods invoked, and how they behave:

create_manpages

As the name says, this method creates manpages from some pod files
 I have to document the
C binaries that will be built. This is done
 searching for all pod files in a specific directory, and
running pod2man.

At the moment I am running pod2man binary with exactly this
 name. This might be a problem
for some installations that have a
 version concatenated in the binary name, or cases in which
the binary
 is not available in the default binary path.

 sub ACTION_create_manpages {
 my $self = shift;

 # get a list of pod files
 my $pods = $self->rscan_dir("src", qr/\.pod$/);
 # get our module version
 my $version = $self->notes('version');

 # for each pod file
 for my $pod (@$pods) {
 # compute the man page name (and its path)
 my $man = $pod;
 $man =~ s!.pod!.1!;
 $man =~ s!src!catdir("blib","bindoc")!e;

 # skip if the file is up to date
 next if $self->up_to_date($pod, $man);

 # now, run directly the pod2man command
 `pod2man --section=1 --center="Lingua::Jspell"
 --release="Lingua-Jspell-$version" $pod $man`;
 }
 }

Building C and C++ Libraries with Perl

Page 6

Note that here I place the manpages in the blib\bindoc
 folder. Citing the documentation,
Documentation for the stuff in
 script and bin. Usually generated from the POD in those files.
Under
 Unix, these are manual pages belonging to the 'man1' category.

create_yacc

In this method I compute the C file from the yacc source file. The
 method is quite
straightforward.

 sub ACTION_create_yacc {
 my $self = shift;

 my $ytabc = catfile('src','y.tab.c');
 my $parsey = catfile('src','parse.y');

 return if $self->up_to_date($parsey, $ytabc);

 my $yacc = Config::AutoConf->check_prog("yacc","bison");
 if ($yacc) {
 `$yacc -o $ytabc $parsey`;
 }
 }

Although the generated file is shipped in the module tarball, if yacc or bison are available, I
recompute it. This makes it easy
 for me to make changes and use the same makefile to
build the
 module.

create_objects

I build the library in two steps. First I compute the object
 files in this method. To create the
object files I do not need to use
 the LibBuilder module, therefore I access the cbuilder
field in
 the Builder object. Then, search for all the C files, set the compile
 flags to use
ncurses accordingly with the detection performed in Build.PL, and build each file, if
needed.

 sub ACTION_create_objects {
 my $self = shift;

 my $cbuilder = $self->cbuilder;
 my $c_files = $self->rscan_dir('src', qr/\.c$/);
 my $extra_compiler_flags = "-g " . $self->notes('ccurses');

 for my $file (@$c_files) {
 my $object = $file;
 $object =~ s/\.c/.o/;
 next if $self->up_to_date($file, $object);
 $cbuilder->compile(object_file => $object,
 source => $file,
 include_dirs => ["src"],
 extra_compiler_flags =>
$extra_compiler_flags);
 }
 }

create_library

The final step to create the library is just to link the object files
 that were built in the last step in
a standard dynamic library
 (.so, .dyld or .dll accordingly with the operating
 system). This
is one of the places where I need to use the LibBuilder object.

The process is quite simple. Start by obtaining the LibBuilder
 object, detect which

Building C and C++ Libraries with Perl

Page 7

extension the current operating system uses, and
 define the object files that are needed for
the library. I could
 search for all the files with .o extension, but there are some
 files that I do
not want to include in the library. Therefore, I
 decided to just list them all.

Then, define the library name and the place where it will be placed,
 define the linker flags, and
run the link method in the LibBuilder object.

 sub ACTION_create_library {
 my $self = shift;

 # get details on the builder and lib extension
 my $libbuilder = $self->notes('libbuilder');
 my $LIBEXT = $libbuilder->{libext};

 # define what files will be linked together
 my @files = qw!correct defmt dump gclass good hash jjflags
 jslib jspell lookup makedent sc-corr y.tab!;
 my @objects = map { catfile("src","$_.o") } @files;

 # define where the resulting library will be placed
 my $libpath = $self->notes('libdir');
 $libpath = catfile($libpath, "libjspell$LIBEXT");
 my $libfile = catfile("src","libjspell$LIBEXT");

 # define the linker flags
 my $extralinkerflags =
$self->notes('lcurses').$self->notes('ccurses');
 $extralinkerflags.=" -install_name $libpath" if $^O =~ /darwin/;

 # link if the library is not up to date
 if (!$self->up_to_date(\@objects, $libfile)) {
 $libbuilder->link(module_name => 'libjspell',
 extra_linker_flags => $extralinkerflags,
 objects => \@objects,
 lib_file => $libfile,
);
 }

 # create a folder where to place the library
 my $libdir = catdir($self->blib, 'usrlib');
 mkpath($libdir, 0, 0777) unless -d $libdir;

 # copy if needed
 $self->copy_if_modified(from => $libfile,
 to_dir => $libdir,
 flatten => 1);
 }

This code could be cleaned a little bit, but probably in a later
 release.

create_binaries

This method is very similar to the create_objects but, instead of
 creating object files from
source files, it will compile binary files
 from object files. Again, this method will use the
LibBuilder
 object for this task.

 sub ACTION_create_binaries {
 my $self = shift;

 # get details on the builder and binary extension

Building C and C++ Libraries with Perl

Page 8

 my $libbuilder = $self->notes('libbuilder');
 my $EXEEXT = $libbuilder->{exeext};

 # define flags
 my $extralinkerflags =
$self->notes('lcurses').$self->notes('ccurses');

 # define the binary that will be created
 my $exe_file = catfile("src", "jspell$EXEEXT");

 # what is the needed object file
 my $object = catfile("src", "jmain.o");

 # if needed, link the executable
 if (!$self->up_to_date($object, $exe_file)) {
 $libbuilder->link_executable(
 exe_file => $exe_file,
 objects => [$object],
 extra_linker_flags => "-Lsrc -ljspell
$extralinkerflags");
 }

 # and if needed, copy the file
 $self->copy_if_modified(from => $exe_file,
 to_dir => "blib/bin",
 flatten => 1);
 }
 }

As it can be seen, this division in small tasks makes it easy to
 follow. And they all have a similar base
(very similar with Makefile rules): find the source files, apply a command (or more
 than one) to each of
them, and obtain a set of target files.

The usual next step in the build process is to run Build test. This
 invokes the ACTION_test
method. Usually I would not need to
 subclass this method, but as my tests need the binary to work, I
need
 it to find the proper library at run time. More important, I need it
 to find the library it just linked,
and not another version that may
 be hanging in the file system. For that, I just tweak the library
 search
path, taking care to do it correctly accordingly with the
 operating system in which we are running.

 sub ACTION_test {
 my $self = shift;

 if ($^O =~ /mswin32/i) {
 $ENV{PATH} = catdir($self->blib,"usrlib").";$ENV{PATH}";
 }
 elsif ($^O =~ /darwin/i) {
 $ENV{DYLD_LIBRARY_PATH} = catdir($self->blib,"usrlib");
 }
 elsif ($^O =~ /(?:linux|bsd|sun|sol|dragonfly|hpux|irix)/i) {
 $ENV{LD_LIBRARY_PATH} = catdir($self->blib,"usrlib");
 }
 elsif ($^O =~ /aix/i) {
 my $oldlibpath = $ENV{LIBPATH} || '/lib:/usr/lib';
 $ENV{LIBPATH} = catdir($self->blib,"usrlib").":$oldlibpath";
 }

 $self->SUPER::ACTION_test

Building C and C++ Libraries with Perl

Page 9

 }

Finally, if everything worked correctly, the next usual command would
 be Build install. Or,
probably Build fakeinstall if you want to
 test how things would be installed before really
installing them. In
 my case, both ACTION_install and ACTION_fakeinstall start
 by calling a
custom action named pre_install.

The pre_install action does some paths cleanups, and copies some
 files that don't need to be
built to the proper place in the blib
 staging folder. I will not share here the code, as it doesn't have

much to talk about, and I prefer not to waste space with it. The more
 interesting portion might be a call
to fix_shebang_line and make_executable to some scripts that I edit manually, and therefore
Module::Build doesn't place in the correct place. I also check if
 the path where the library will be
installed is a standard one, and if
 not, warn the user to add the path to ldconfig, or things
 will not work
properly.

The install action has just one extra step, that is running ldconfig if it is available, the operating
system is
 Linux and user is root. In fact, I probably should look to the uid. In a next release.

Lingua::Identify::CLD

 This module is a
 Perl interface to the Google's Chromium Compact Language Detector
 (CLD) library.
CLD is not available as a tarball at the moment I am
 writing this. It is available in a Google code
repository, only. After
 talking with its maintainer, I decided to bundle the entire library
 code in my
module.

There aren't many differences from the previous module. The main
 differences are the use of C++
code, and the fact that in this
 case I have XS code, and therefore, I need to use
ExtUtils::ParseXS and ExtUtils::Mkbootstrap.

To compile the C++ code, and link the library, the only differences
 are adding some libraries like
libstdc++, and set the C++ option
 to true when invoking the compile or link methods:

 $cbuilder->compile(object_file => $object,
 source => $file,
 include_dirs => ["cld-src"],
 extra_compiler_flags => $extra_compiler_flags,
 'C++' => 1);

and

 $libbuilder->link(module_name => 'libcld',
 extra_linker_flags => $extralinkerflags,
 objects => $o_files,
 lib_file => $libfile,
 'C++' => 1);

Other than that, I need to take care of building the XS portion. For
 inspiration I gave a look to other
modules that do this by hand,
 like the case of Glib. This will be, probably, the longest method
 in this
article.

The code is commented, but the main steps are:

1 Define the XS source file, the C file that will be generated, and
 the object file that will be
created.

2 Process the XS file with ExtUtils::ParseXS, saying I am
 processing a C++ file.

3 Given the C++ source file, create the object file from it. For this I
 use the standard CBuilder
builder object.

4 The next step is the creation of a bootstrap file. It is created by ExtUtils::Mkbootstrap

Building C and C++ Libraries with Perl

Page 10

module. I am not aware of the details of this
 file, nor why it's not always created. I confess I
just copied
 this bunch of code from another module, and it seems to work. Open
 source is
great.

5 The next step is building the library that will be loaded by DynaLoader. First I define the linker
flags, and then use the
 standard CBuilder builder object to create the library. This time I
 am
not using LibBuilder because I am not building a standalone one,
 but one that will be used
only by the Perl module.

 sub ACTION_compile_xscode {
 my $self = shift;
 my $cbuilder = $self->cbuilder;

 my $archdir = catdir($self->blib, qw'arch auto Lingua Identify CLD');
 mkpath($archdir, 0, 0777) unless -d $archdir;

 # set file names
 my $cfile = catfile("CLD.cc");
 my $xsfile= catfile("CLD.xs");
 my $ofile = catfile("CLD.o");

 # create CLD.cc from CLD.xs
 if (!$self->up_to_date($xsfile, $cfile)) {
 ExtUtils::ParseXS::process_file(filename => $xsfile,
 'C++' => 1,
 prototypes => 0,
 output => $cfile);
 }

 # create CLD.o from CLD.cc
 my $extra_compiler_flags = $self->notes('CFLAGS');
 if (!$self->up_to_date($cfile, $ofile)) {
 $cbuilder->compile(source => $cfile,
 include_dirs => [catdir("cld-src")],
 'C++' => 1,
 extra_compiler_flags => $extra_compiler_flags,
 object_file => $ofile);
 }

 # Create .bs bootstrap file, needed by Dynaloader.
 my $bs_file = catfile($archdir, "CLD.bs");
 if (!$self->up_to_date($ofile, $bs_file)) {
 ExtUtils::Mkbootstrap::Mkbootstrap($bs_file);
 if (!-f $bs_file) {
 # Create file in case Mkbootstrap didn't do anything.
 open(my $fh, '>', $bs_file) or confess "Can't open $bs_file:
$!";
 }
 utime((time) x 2, $bs_file); # touch
 }

 # set linker flags
 my $extra_linker_flags = "-Lcld-src -lcld -lstdc++";
 $extra_linker_flags .= " -lgcc_s" if $^O eq 'netbsd';

Building C and C++ Libraries with Perl

Page 11

 my $objects = [$ofile];

 my $lib_file = catfile($archdir, "CLD.$Config{dlext}");
 if (!$self->up_to_date([@$objects], $lib_file)) {
 my $btparselibdir = $self->install_path('usrlib');
 $cbuilder->link(
 module_name => 'Lingua::Identify::CLD',
 extra_linker_flags => $extra_linker_flags,
 objects => $objects,
 lib_file => $lib_file,
);
 }
 }

Of course I could split these steps in different methods,
 dispatched from here. That can be done in a
future release, who knows.

Text::BibTeX

Text::BibTeX is a module to parse BibTeX files. It
 uses a C library, named btparse for that task.
This library was
 available (and an old version still is) as a separated tarball, but
 because of the same
reasons already discussed, I bundled the C code
 in the Perl module.

It uses the same idea of the previous modules, with no big differences.

Lingua::FreeLing3

This module is an API to a C++ library, named FreeLing. It is used to perform natural language
processing tasks,
 like parsing, dependency parsing, name entity recognition, etc.

In this case I do not bundle any C code from the library, only a XS
 file generated from SWIG. Some of
the code described above was used in
 this module as well.

The main reason not to use the Module::Build capabilities to build XS code directly is that I
needed to detect FreeLing by myself, and
 detect which libraries it needs to be linked against.
Therefore, I
 decided to take the build system in my hands.

Lingua::NATools

Finally, Lingua::NATools is a toolkit for
 processing and aligning parallel corpora. Is has been used
by a lot of
 researchers to extract probabilistic translation dictionaries. At
 first, I bundled the Perl
module inside the AutoTools tarball. It was
 a mess, and few users were able to install and compile it
properly.

With the expertise I gained with the other modules (mainly Lingua::Jspell and Text::BiBTeX) I
decided to do the other way
 around, and included the C part in a Perl module.

The main difference from this tool to the others is the high
 amount of C and Perl dependencies (the
method to detect is the same as
 above, for Lingua::Jspell), and the fact that the tests include

some binaries for themselves (that are not installed, just compiled
 and executed during the testing
stage).

For that, the ACTION_test method starts by dispatching to a create_test_binaries action, very
similar to the create_binaries
 action, that builds the binaries.

Final Conclusions and Remarks
All this process is very tedious to maintain, but once I get it
 working, I do not need to change it much. I
am not completely happy
 with the code quality or maintainability. Also, not happy with
ExtUtils::LibBuilder implementation. But for now, this seems to
 work on my major target
architectures.

When I have time, and a lower stack of to-do items, I might patch Module::Build, or create some

Building C and C++ Libraries with Perl

Page 12

Module::Build::Library, that
 automates some of these tasks, as they seem easy to automate.
The
 result of not having that module yet, is that some of the modules I
 have described have better
build implementations that others.

Finally, I would be happy with suggestions, patches, and comments. I
 think this kind of tool chain is
important to the Perl community, and
 can make the difference for some specific projects.

